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Abstract 13	
  

This paper presents global land carbon fluxes for the period 1982-2010 (gross primary 14	
  

production, GPP, and net ecosystem exchange, NEE) estimated with the Max Planck 15	
  

Institute – Carbon Cycle Data Assimilation System (MPI-CCDAS v1). The primary 16	
  

aim of this work is to analyze the performance of the MPI-CCDAS when it is 17	
  

confronted with three different time periods for data assimilation (DA), and thereby to 18	
  

assess its prognostic capability. To this extend we assimilated nearly three decades 19	
  

(1982-2010) of space borne measurements of the fraction of absorbed photosynthetic 20	
  

active radiation (FAPAR) and atmospheric CO2 concentrations from the global 21	
  

network of flask and in situ measurements. Both data sets were incorporated with 22	
  

different assimilation windows covering the periods 1982-1990, 1990-2000 and 1982-23	
  

2010. The assimilation results show a considerable improvement in the long-term 24	
  

trend and seasonality of FAPAR in the Northern Hemisphere, as well as in the long-25	
  

term trend and seasonal amplitude of the atmospheric CO2 concentrations when 26	
  

compared to the observations in sites globally distributed. After the assimilation, the 27	
  

global net land-atmosphere CO2 exchange (NEE) was −1.2 PgC yr−1, in agreement 28	
  

with independent estimates, while gross primary production (GPP; 92.5 PgC yr−1) was 29	
  

somewhat below the magnitude of independent estimates. The NEE in boreal eastern 30	
  

regions (Northeast Asia) increased on average by −0.13 PgC yr−1, which translated 31	
  

into an intensification of the carbon uptake in those regions by nearly 30 % than the 32	
  

contribution to the global annual average in the model before the assimilation. 33	
  

Our results demonstrate that using information only over a decade already yielded a 34	
  

large fraction of the overall model improvement, in particular for the simulation of 35	
  

phenological seasonality, its interannual variability (IAV) and long-term trend. 36	
  

Adding longer than decadal data did only lead to very moderate improvements in the 37	
  

long-term trend of the FAPAR simulated by the model, which may be attributed to the 38	
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 2	
  

small model-data mismatch at the long timescales compared to the significantly larger 39	
  

observational signal and model-data mismatch error at seasonal cycle time scale. 40	
  

Decadal data also significantly improved the seasonality, IAV and long-term 41	
  

simulated trend in atmospheric CO2. Importantly, when running the MPI-CCDAS v1 42	
  

with 30 years of data, the results remained in line with observations throughout this 43	
  

period, suggesting that the model can represent land uptake to a sufficient degree to 44	
  

make it compatible with the atmospheric CO2 record. Using data from 1982 to 1990 45	
  

in the assimilation yielded only a difference to the observations of 2±1.3 ppm for the 46	
  

period 15 to 19 years after the end of the assimilation. This suggests that despite 47	
  

imperfections in the representation of IAV, model-data fusion can increase the 48	
  

prognostic capacity of land carbon cycle models at relevant time-scales.  49	
  

Key words:  Data assimilation, Global Carbon cycle, modeling, atmospheric CO2. 50	
  

 51	
  

1 Introduction 52	
  

The observed contemporary in atmospheric CO2 is driven by anthropogenic emissions 53	
  

from fossil fuels and land-use change (2007-2016 average: 11.1±0.6 GtC yr−1), and 54	
  

the concurrent net carbon uptake of the ocean and land from the atmosphere, which 55	
  

take up approximately 22.4 % and 28 % of the anthropogenic flux, respectively (Le 56	
  

Quéré et al., 2018). Despite recent advances in atmospheric observations, ocean and 57	
  

land modeling, there remains an imbalance between carbon emissions, ocean and land 58	
  

sinks, and changes in the atmospheric CO2 concentration of 5.6 % (0.6 GtC yr−1). 59	
  

Despite substantial progress in improving the performance of terrestrial biosphere 60	
  

models over the past decades, the simulated global terrestrial carbon fluxes and the 61	
  

net land carbon balance pose still the highest uncertainties from all of the components 62	
  

of the global carbon cycle (Friedlingstein et al., 2014; Le Quéré et al., 2018). 63	
  

Quantifying the magnitude and dynamics of the global terrestrial carbon cycle across 64	
  

different temporal scales and their contribution to the global carbon cycle, is 65	
  

challenging because the large heterogeneity and complexity of these ecosystems, in 66	
  

addition to the quantification of contemporary effects and response of these 67	
  

ecosystems to increasing post-industrial CO2 concentrations (Lienert and Joos, 2018; 68	
  

Stocker et al., 2014; Wang et al., 2017). 69	
  

One strategy to reduce the mismatch between the carbon flux predictions of land 70	
  

surface models and observed trends in atmospheric CO2 concentrations is through 71	
  

data assimilation (DA) techniques, meaning to “train” the land models by confronting 72	
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 3	
  

them systematically with observations of carbon-related variables (Raupach et al., 73	
  

2005). During DA, process parameters of land surface models are adjusted through 74	
  

numerical minimization techniques to reduce the misfit between model results and 75	
  

actual observations under consideration of the statistical properties of model and 76	
  

observations. Contrary to the application of atmospheric transport inversion to infer 77	
  

the sinks and sources of CO2 between the atmosphere and land or ocean from 78	
  

atmospheric CO2 measurements (Newsam and Enting, 1988; Peylin et al., 2013; 79	
  

Rayner et al., 1999; Rödenbeck et al., 2003), the application of these carbon cycle 80	
  

data assimilation systems (CCDAS) provides the additional opportunity to inform the 81	
  

process-based carbon cycle mechanisms in the land surface model to support a better 82	
  

estimate and capacity to project dynamics of the terrestrial carbon cycle. Several 83	
  

CCDAS have been developed for this purpose (e.g. Kaminski et al., 2012; Kaminski 84	
  

et al., 2013; Lienert and Joos, 2018; Peylin et al., 2016; Scholze et al., 2016). 85	
  

Although they rely in different statistical methods (i.e. variational or sequential data 86	
  

assimilation) (Montzka et al., 2012), their common characteristic is integrating long-87	
  

term and time consistent global available observational records related to the carbon 88	
  

cycle such as atmospheric CO2 measurements from flask and in situ networks 89	
  

(Conway et al., 1994), and remote sensing products of canopy phenology properties 90	
  

such as MODIS-NDVI (Moderate Resolution Imaging Spectroradiometer - 91	
  

Normalized Difference Vegetation Index) (Rouse et al., 1974) and FAPAR (Disney et 92	
  

al., 2016; Pinty et al., 2011a).  93	
  

In this work, we use the Max Planck Institute - Carbon Cycle Data Assimilation 94	
  

System (MPI-CCDAS v1, Schürmann et al., 2016) that has been built around the Jena 95	
  

Scheme Biosphere-Atmosphere Coupling in Hamburg (JSBACH) land-surface model 96	
  

(Dalmonech and Zaehle, 2013; Raddatz et al., 2007; Reick et al., 2013). The MPI-97	
  

CCDAS follows a variational approach that iteratively reduces the model-data misfit 98	
  

simultaneously for multiple observational and independent carbon cycle data sets 99	
  

(Kaminski et al., 2013). Since its first development based on the BETHY (Biosphere 100	
  

Energy-­‐‑Transfer Hydrology) - CCDAS, the MPI-CCDAS has undergone several code 101	
  

modifications and improvements, as well as tests of the assimilation of new 102	
  

observational data sets (e.g. Kaminski et al., 2012; Kaminski et al., 2013; Rayner et 103	
  

al., 2005; Scholze et al., 2016; Schürmann et al., 2016), with the aim of further 104	
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 4	
  

improving the representation of land carbon fluxes. The history of the MPI-CCDAS 105	
  

and other current DA systems is extensively discussed in Scholze et al. (2017). 106	
  

In this paper, we seek to analyze the extent to which the application of a CCDAS 107	
  

leads to the improved representation of the contemporary land carbon cycle and its 108	
  

prognostic capacity for subsequent years. To this extent, we analyze the estimated 109	
  

major components of the terrestrial carbon cycle with the MPI-CCDAS in response to 110	
  

the simultaneous assimilation of three decades of data from two observational 111	
  

constraints: FAPAR from remote sensing data and atmospheric CO2 concentrations 112	
  

from the global flask measurements network. Our aim is to analyze the performance 113	
  

of the MPI-CCDAS to: 1) how well the model is able to reproduce 30 years of 114	
  

constraint data, 2) how sensitive is the assimilation success to the choice of different 115	
  

temporal windows used for the assimilation (implying different amounts of 116	
  

observational data during the assimilation), and 3) how good is the fit to the data in 117	
  

the time period beyond the period constrained with observations. 118	
  

2 Methods 119	
  

2.1 MPI-CCDAS  120	
  

The code of the MPI-CCDAS version in this work is identical to the one used in 121	
  

Schürmann et al. (2016). The model calculates the half-hourly storage and surface 122	
  

fluxes of energy, water and carbon in terrestrial ecosystems at a coarse spatial 123	
  

resolution for computational feasibility (8° by 10° grid). The spatial distribution of the 124	
  

different plant-functional types (PFTs, Table 1) in JSBACH is shown in Fig. S1 125	
  

(Supplement). The selection of parameters for the assimilation procedure, their prior 126	
  

values and range was based on Schürmann et al. (2016; Table 1). The initial state of 127	
  

the parameters was obtained from an independent forward simulation of JSBACH 3.0 128	
  

(see Sect. 2.3.1). As described in Schürmann et al. (2016), MPI-CCDAS starts with an 129	
  

initial guess for the model control vector (ppr) of e.g. carbon cycle properties, and 130	
  

model states, and their Gaussian uncertainty (“prior”) with covariance Cpr. The model 131	
  

control vector p is iteratively updated to minimize a joint cost function J describing 132	
  

the misfit between observational data-streams (d; FAPAR and atmospheric CO2, both 133	
  

with covariance Cd) and the corresponding simulated observation operators of the 134	
  

MPI-CCDAS M(p), taking into account the uncertainties in the observational data 135	
  

assuming a Gaussian distribution and the information from the prior. 136	
  

 𝐽 𝒑 =    !
!
𝑀 𝒑 −   𝒅 !𝑪!!! 𝑀 𝒑 − 𝒅 + 𝒑− 𝒑!"

!𝑪!"!! 𝒑− 𝒑!"  (1) 137	
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 5	
  

During the optimization procedure, a new model trajectory is determined in each 138	
  

iteration, such that energy and mass are conserved through the entire assimilation 139	
  

window (Kaminski and Mathieu, 2017). The gradient of the cost function with respect 140	
  

to the model control vector (!"
!"

) is evaluated with a tangent-linear version of JSBACH 141	
  

3.0, which was generated through automatic differentiation using a TAF 142	
  

(Transformation of Algorithms in Fortran) compiler tool (Giering and Kaminski, 143	
  

1998). With this tangent-linear version of the model code, the derivatives for the parts 144	
  

of the model code where J(p) is evaluated (i.e. code parts that depend on the control 145	
  

variables), are accurately calculated following the chain rule of calculus. Thus, the 146	
  

mathematical formulation of the code involved in the cost function must be 147	
  

differentiable. Since this was not the case for the phenological code of JSBACH 3.0, 148	
  

the phenology scheme, as described by Schürmann et al. (2016), was updated 149	
  

following Knorr et al. (2010) where the minimum and maximum calculations in the 150	
  

entire code were replaced by smoothing functions to avoid steep transitions. 151	
  

2.2 Observational data sets 152	
  

2.2.1 FAPAR 153	
  

FAPAR is the fraction of the radiation that is absorbed by plants during 154	
  

photosynthesis, thus is a component of the land-surface radiation budget that 155	
  

dynamically indicates the status of the vegetation canopy over space and time 156	
  

(Gobron et al., 2006). In a previous study, MPI-CCDAS was constrained by MODIS-157	
  

TIP (Two-stream Inversion Package) FAPAR (hereafter TIP-FAPAR) generated from 158	
  

the inversion of a 1-D radiation transfer model (Pinty et al., 2006; Pinty et al., 2007) 159	
  

using the MODIS broadband visible and near-infrared spectral white sky surface 160	
  

albedo as input (Clerici et al., 2010; Pinty et al., 2011a; Pinty et al., 2011b). For this 161	
  

study, the TIP-FAPAR product was available only from 2003 to 2011, making it 162	
  

unsuitable for the indented longer assimilation period. While there are long-term 163	
  

remotely sensed proxies of FAPAR, such as the NDVI (Rouse et al., 1974), it has 164	
  

been found previously that NDVI was less reliable that TIP-FAPAR in terms of the 165	
  

seasonal cycle amplitude of vegetation seasonality (Dalmonech and Zaehle, 2013; 166	
  

Dalmonech et al., 2015). We therefore merged the Global Inventory Monitoring and 167	
  

Modeling System (GIMMS) NDVI product, available from 1982 to 2006 (Tucker et 168	
  

al., 2005), with TIP-FAPAR to provide a longer record of vegetation greenness. The 169	
  

maximum and minimum NDVI values were rescaled at the pixel level to coincide 170	
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 6	
  

with those from the TIP-FAPAR for the overlapping time periods (2003 to 2006) 171	
  

following: 172	
  

  𝑁𝐷𝑉𝐼!"# =
!"#$!  !"#$!"#

!"#$!"#!!"#$!"#
× 𝑇𝐼𝑃!"# − 𝑇𝐼𝑃!"# + 𝑇𝐼𝑃!"#   (2) 173	
  

where TIP is the TIP-FAPAR data. The median uncertainty of the available TIP-174	
  

FAPAR data was considered as the uncertainty for the entire time-series. For this 175	
  

study, this product was aggregated to match the model grid horizontal resolution 176	
  

considering separately background snow-free and snow-covered conditions 177	
  

(Schürmann et al., 2016). 178	
  

As in Schürmann et al. (2016), we applied a mask to the global FAPAR with the aim 179	
  

of selecting useful pixels in the FAPAR global grid. The selection of pixels to be 180	
  

removed from the global grid followed three criteria: 1) since no explicit crop 181	
  

phenology is described in JSBACH, we masked out the grid cells with a crop-182	
  

dominated phenology of > 20 %. This step has consequences in areas where other 183	
  

important functional types are also present in the same grid cells such as deciduous 184	
  

broadleaves that are also abundant in the USA and Europe. As a result, the parameters 185	
  

related to deciduous broadleaves are constrained from other locations; 2) we further 186	
  

masked out pixels that hold a low correlation (R2 < 0.2) when compared the prior 187	
  

model result and the observations, as we had previously found that the MPI-CCDAS 188	
  

is incapable of correcting such poor model behaviors (Schürmann et al. 2016); and 3) 189	
  

finally, we masked out pixels located in areas where phenology abundance is low, i.e. 190	
  

deserts, because they would influence the optimization causing a large bias due to 191	
  

compensating effects. The final FAPAR product used during the assimilation contains 192	
  

only 40 % of the initial number of pixels after the applied mask, resulting in more 193	
  

pixels distributed in the Northern Hemisphere compared to the Southern areas. This 194	
  

observational data will be referred hereafter as FAPARobs (see Fig. 1 for the global 195	
  

distribution of mean FAPARobs from 1982 to 2006). 196	
  

2.2.2 Atmospheric CO2 concentrations and observation operator 197	
  

Measurements of atmospheric CO2 mixing ratios were taken from the flask data 198	
  

continuous record of 28 sites in the NOAA/CMDL station network (Conway et al., 199	
  

1994; Rödenbeck et al., 2003). The selection criteria included length of the record (on 200	
  

average 19 years) (Fig. A1) and focused on remote and ocean stations with low 201	
  

impact of local carbon sources and sinks of carbon (Schürmann et al., 2016) (see 202	
  

location of CO2 stations in Fig. 1). The atmospheric transport of CO2 is calculated in 203	
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 7	
  

MPI-CCDAS through the Jacobian representation of the TM3 atmospheric transport 204	
  

model driven by meteorology fields from NCEP (National Centers for Environmental 205	
  

Prediction) reanalysis. TM3 is run at horizontal “fine grid” (fg) resolution of 4° × 5° 206	
  

(Heimann and Körner, 2003; Rödenbeck et al., 2003). During the generation of this 207	
  

matrix representation, the precise sampling time of flask measurements was 208	
  

considered to minimize the representation error due to short-term fluctuations in 209	
  

atmospheric transport. The treatment of uncertainties is done in the same way as in 210	
  

the TM3 atmospheric inversion (Rödenbeck et al., 2003) but, as in Schürmann et al. 211	
  

(2016), imposing a floor value of 1 ppm to the uncertainties (Rayner et al., 2005) to 212	
  

allow a range for the comparison to the observational operator. 213	
  

In order to compare the land fluxes from MPI-CCDAS to atmospheric concentrations, 214	
  

background carbon fluxes (from fossil fuel emissions, use and change of land cover, 215	
  

and from the ocean) are necessary to account for the total carbon balance. 216	
  

Land-use and land-cover change: the LULCC fluxes were obtained from a transient 217	
  

simulation done with the JSBACH 3.0 forced with prescribed annual maps of 218	
  

modified cover fractions (Hurtt et al., 2006). These fluxes do not consider 219	
  

disturbances such as fluxes from fires.  220	
  

Fossil fuel emissions: The FF emissions used for this work are the result of a merged 221	
  

product from various data sets with the aim to complete a long record of emissions, 222	
  

i.e. 1980 to 2012. This product was prepared for the GEOCARBON project 223	
  

(www.geocarbon.net) by P. Peylin after merging and harmonizing various data sets: 224	
  

1) for the period 1980 to 1989, the CDIAC (Carbon Dioxide Information Analysis 225	
  

Center; http://cdiac.ess-dive.lbl.gov/) product prepared for the CMIP5 exercise 226	
  

(Andres et al., 2013; Andres et al., 2011; Andres et al., 1996); 2) for the period 1990 227	
  

to 2009, the IER-EDGAR (Institute of Energy and Rational use of Energy, Stuttgart, 228	
  

Germany - Emission Database for Global Atmospheric Research; 229	
  

www.carbones.eu/wcmqs/project/) product where the FF emissions are constructed 230	
  

using the EDGAR v4.2 data set (http://edgar.jrc.ec.europa.eu/overview.php?v=42) 231	
  

and completed with profiles for different countries, emission sectors and time zones 232	
  

available for different temporal resolutions; and 3) for the period 2010 to 2012, the 233	
  

CarbonTracker product derived at NOAA-Climate Monitoring and Diagnostics 234	
  

Laboratory (CMDL;  https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/).  235	
  

Ocean fluxes: Two products were merged to account for the oceanic CO2 fluxes: 1) 236	
  

results from the Jena CarboScope v3.4 for the period between 1990-2007 (Rödenbeck 237	
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 8	
  

et al., 2013) (http://www.bgc-jena.mpg.de/CarboScope/?ID=s), and 2) ocean annual 238	
  

fluxes from the Global Carbon Budget 2014 (Le Quéré et al., 2015) (http://cdiac.ess-239	
  

dive.lbl.gov/GCP/carbonbudget/2014/). The ocean fluxes for monthly resolution 240	
  

follow Takahashi et al. (2002) and the spatial distributions follow Mikaloff Fletcher et 241	
  

al. (2006). 242	
  

2.3 Experimental setup 243	
  

2.3.1 Spin up and preparation of initial files 244	
  

MPI-CCDAS was forced with meteorology from CRU-NCEP (the Climate Research 245	
  

Unit from the University of East Anglia, analysis of the NCEP reanalysis atmospheric 246	
  

forcing) version 6.1. The CRU-NCEP v6.1 reanalysis data is available at daily 247	
  

resolution from 1901 to 2014 with a spatial resolution of 0.5° (Viovy and Ciais, 2015; 248	
  

last access July 2015). These atmospheric forcing fields (i.e. wind speed, air 249	
  

temperature, precipitation, downward short- and long-wave radiation and specific 250	
  

humidity) were remapped to the coarse (8° × 10°) model grid. In addition, prescribed 251	
  

annual means (one global mean annual value) of atmospheric CO2 were also included 252	
  

as part of the forcing fields for the model 253	
  

(https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html, accessed July 2015). 254	
  

Prior to the assimilation experiments, the JSBACH model was spun up to equilibrium 255	
  

of the vegetation and soil carbon pools with 1901 atmospheric CO2, land cover and 256	
  

1901-1910 climate. The spin up procedure was done for a model period of 1000 years 257	
  

with repeated cycles of atmospheric forcing data. After this period, a transient model 258	
  

simulation was done also with the forward JSBACH model for the period 1901 to 259	
  

2012. This transient simulation included change in atmospheric CO2, climate and land 260	
  

cover. The purpose of this simulation was: i) to obtain the initial conditions for the 261	
  

CCDAS experiments, and ii) to derive spatially resolved land-use emissions from 262	
  

JSBACH as additional forcing (see section 2.2.2). Due to technical limitations, the 263	
  

cover fraction of each PFT is kept constant in MPI-CCDAS during data assimilation, 264	
  

and thus remained fixed through the simulation period in order to account for the 265	
  

imprint of the space-time dynamics of land-use change emissions on atmospheric CO2 266	
  

concentrations. After the spin-up procedure, an initial global scaling factor was set for 267	
  

the slowly varying carbon pool (fslow, also selected as optimization parameter) to 268	
  

account for non-steady-state conditions at the beginning of the assimilation 269	
  

(Carvalhais et al., 2008; Schürmann et al., 2016). 270	
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 9	
  

2.3.2 Assimilation experiments 271	
  

During the assimilation procedure, the model was forced with the same daily 272	
  

reanalysis atmospheric data used during the model spin up. The simulation period is 273	
  

from 1970 to 2010 for all the experiments. In this study we present the results of three 274	
  

long-term experiments using the MPI-CCDAS, which differ only in the timeframe of 275	
  

the observational records used during the assimilation: 1) experiment ALL, covers 276	
  

data in 1980-2010 and includes the complete available timeframe of the two 277	
  

observational data sets, i.e. for FAPAR is from 1982 to 2006 and for the atmospheric 278	
  

CO2 concentrations is from 1982 to 2010; 2) DEC1, covers observations available 279	
  

from 1982 to 1990; and 3) DEC2, covers observations available from 1990 to 2000. 280	
  

Because of the different lengths of the CO2 records for some stations, this ultimately 281	
  

leads to different number of observational data used for each experiment (Fig. 2).  282	
  

In all of the experiments the first ten years of the simulation (1970 to 1979) are to 283	
  

allow phenology, vegetation productivity and the fast land C pools to adjust to the 284	
  

new model control vector p and avoid any imprint of the initial conditions on the 285	
  

calculation of the cost function. The soil C pool at the beginning of the experiment 286	
  

was included in the model control vector. Thus, the initial period is discarded and 287	
  

only results from 1980 are reported. The periods of time that fall outside the 288	
  

assimilation window of the observational constraints on each experiment are thus 289	
  

periods of model prognosis, i.e. the prognosis period in DEC1 is from 1991 to 2010, 290	
  

and in DEC2 for 2001 to 2010. 291	
  

3 Results 292	
  

3.1 Mean seasonal phenology  293	
  

We analyzed the global distribution of FAPAR before and after the assimilation 294	
  

against the observations. To facilitate the analysis, we also divided the global land 295	
  

into eight regions: Boreal West and East (BW and BE, for latitudes north of 60 °N), 296	
  

subtropical Northwest and Northeast (STNW and STNE, between latitudes 20 °N and 297	
  

60 °N); tropical West and East (TW and TE, between latitudes 20 °N and 20 °S); 298	
  

subtropical Southwest and Southeast (STSW and STSE, for latitudes south of 20 °S) 299	
  

(Fig. 1). The normalized RMSE (NRMSE = RMSE / mean(FAPARobs)) and bias 300	
  

between the modeled and observed FAPAR for 1982 to 2006 are somewhat reduced 301	
  

by all assimilation experiments compared to the PRIOR (Table 2). One cause for this 302	
  

decreased model-data misfit is the change in the spatial distribution of LAI, primarily 303	
  

caused by the optimization of the PFT-specific maximum LAI (Λmax) parameter (see 304	
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Fig. A2 in the appendix for results of parameters changes after the assimilation). 305	
  

Compared to the PRIOR experiment, the assimilation leads to substantial changes in 306	
  

the LAI of the tropical forest area, with general reductions of LAI in all three 307	
  

assimilation experiments. There is less agreement for the extra-tropical areas, with the 308	
  

ALL experiment suggesting small reductions in LAI, whereas the experiments DEC1 309	
  

and DEC2 see slight increases (Fig. 3, left panels) relative to the PRIOR experiment.  310	
  

The second reason for the reduced misfit is an improved representation of the FAPAR 311	
  

interannual variability (IAV) at a regional scale (Fig. 4) and seasonal cycle at the 312	
  

pixel level (Fig. S2), particularly in the temperate and boreal zones of the Northern 313	
  

Hemisphere. This is also evidenced by the increase in linear correlation coefficient R2 314	
  

between modeled and observed FAPAR with respect to the PRIOR experiment (Fig. 315	
  

3, right panels). However, it is important to note that the fit remains far from perfect, 316	
  

likely owing to model structural errors in the way that the meteorological triggers of 317	
  

phenological events adjust to local climatic conditions. The average global correlation 318	
  

between model and observations increased moderately in all the assimilation 319	
  

experiments compared to the PRIOR experiment (Table 2 and Fig. 3). This is 320	
  

particularly true for the DEC1 and DEC2 experiments (R2=0.34 in both experiments) 321	
  

than in the experiment that includes all the window of assimilation, i.e. ALL 322	
  

(R2=0.20). The improved correlation is primarily the consequence of an increased 323	
  

ability of the model to simulate the timing of green-up and brown-down, and its IAV 324	
  

at regional scale (Fig. 4). Interestingly, the model fit is better if the model is only 325	
  

subjected to 10 years of data, instead of exposing it to the entire time series.  326	
  

To further analyze the effect of the assimilation procedure on the simulated 327	
  

seasonality and monthly growth rate of the FAPAR, we also selected six pixels that 328	
  

are distributed in locations characterized by a dominant PFT (see Fig. 1 for the 329	
  

geographic location of the pixels). A clear improvement after the assimilation is in 330	
  

pixels P1, P2, and P6, where the magnitude of the mean seasonal cycle is better 331	
  

represented when compared to the observations (Fig. S2). Also, the timing of the 332	
  

mean seasonal cycle is corrected e.g. in pixels with large seasonal amplitude such as 333	
  

in P1 (located in Eastern Siberia) and in P6 (located in Canada). While in the PRIOR 334	
  

experiment (and ALL experiment) the onset and peak of the growing season in P1 and 335	
  

P6 are delayed by up to two months, in the results from experiments DEC1 and DEC2 336	
  

this delay is reduced to only one month. This correction might be partially due to 337	
  

changes in some optimized parameters: increase in the day length at leaf shedding (tc) 338	
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and reduction in the temperature at leaf onset Tφ, detected for both the CD and CE 339	
  

phenotypes (as well as for ETD and TeCr) (Fig. A2); this is because these parameters 340	
  

control the onset and end of the vegetation activity. This temporal shift however, is 341	
  

less evident in other pixels such as in P2, despite changes in Tφ and tc after the 342	
  

assimilation in TrH, and this is because the amplitude of the seasonal cycle is small 343	
  

and only changes in the magnitude of the amplitude are evident (Fig. S2). 344	
  

In the results of DEC1 and DEC2 for pixel P3 (dominated by TeCr), the water stress 345	
  

tolerance time (τw) and Tφ were largely reduced, whereas the leaf shedding timescale 346	
  

(1/τl; earlier shedding) increased. These changes allowed a considerable improvement 347	
  

in the timing and duration of the FAPAR in the growing season. The seasonal spatial 348	
  

distribution of the correlation coefficient R2 for the period 1982-2006 (considering 349	
  

only the period of available FAPARobs), obtained after the linear correlation between 350	
  

the FAPARobs and the model output, is shown in Fig. S3, and the mean global values 351	
  

are also listed in Table 2. The R2 increased mostly in the Northern Hemisphere where 352	
  

is evident the spatial extent of the improvement in FAPAR after the assimilation 353	
  

during spring and autumn in the experiments with a shorter window of assimilation 354	
  

(DEC1 and DEC2). 355	
  

3.2 Mean characteristics of atmospheric CO2 356	
  

We next analyze the performance of MPI-CCDAS with respect to the atmospheric 357	
  

mole fractions of CO2. As example, we compare observed and simulated CO2 mole 358	
  

fractions at three stations: 1) at the Northern Hemisphere (Alert, ALT), 2) at the 359	
  

Tropics (Mauna Loa, MLO), and 3) at the Southern Hemisphere (South Pole, SPO) in 360	
  

terms of the mean seasonal cycle, IAV and monthly growth rate. We also compare the 361	
  

fluxes from the assimilation to fluxes obtained from an atmospheric transport 362	
  

inversion (referred to as INV). Very similarly to the MPI-CCDAS, the atmospheric 363	
  

transport inversion is constrained by atmospheric CO2 data linked surface fluxes 364	
  

through a tracer transport model, but it adjusts the land surface CO2 fluxes directly 365	
  

rather than through adjustments to the parameters of a land-surface process model. 366	
  

The inversion set-up used here is similar to the Jena CarboScope v4.1 (Rödenbeck, 367	
  

2005; Rödenbeck et al., 2003), involving the same transport model (TM3) as in the 368	
  

MPI-CCDAS. To make the inversion results as comparable as possible to the results 369	
  

of this study, the same prior fluxes from fossil fuel emissions and ocean as in MPI-370	
  

CCDAS were used, as well as the same CO2 stations. This comparison also helps to 371	
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gauge the impact of non-land surface fluxes on the ability to reproduce the 372	
  

observations. Results on this comparison are shown in Fig. 5. For MLO and ALT the 373	
  

timing of the seasonal cycle was already well reproduced in the PRIOR simulation, 374	
  

whereas the assimilation mainly corrects for the amplitude of the seasonal cycle and 375	
  

the long-term trend. In the SPO there are larger relative differences between the 376	
  

model results and the observations, however of a much smaller magnitude than for the 377	
  

two other stations. After the assimilation in the three experiments, the phase in the 378	
  

seasonal CO2 is shifted by approximately a month to better match the pattern in the 379	
  

measurements, and the amplitude of the seasonal cycle after the assimilation is in 380	
  

better agreement with the observations than compared to the PRIOR. 381	
  

Figure 6 demonstrates that these examples are broadly representative of the global 382	
  

changes due to the assimilation. Fig. 6a shows that the amplitude for stations located 383	
  

in the Northern Hemisphere (> 40 °N) is reduced after the assimilation, and in closer 384	
  

agreement to the observations than in the PRIOR simulation. The largest reduction 385	
  

took place in the Northernmost Station (ALT) where the seasonal amplitude 386	
  

decreased from 23.5 ppm in the PRIOR experiment to 16.5 ppm in the ALL 387	
  

experiment after the assimilation, bringing it closer to the observed amplitude of 14.4 388	
  

ppm. The latitudinal distribution of the linear correlation coefficient between the 389	
  

observed and simulated mean seasonal cycles is depicted in Fig. 6b and demonstrates 390	
  

a very good agreement, i.e. values of R2 > 0.9 in the Northern Hemisphere in all of the 391	
  

experiments (including the PRIOR simulation). In the tropics (specifically between 40 392	
  

°N and 20 °N) the MPI-CCDAS achieves an improvement of the model performance 393	
  

by reducing the misfit of the phasing of the seasonal cycle, as evidenced by an 394	
  

increased linear correlation (Fig. 6b), however at the expense of reducing the seasonal 395	
  

cycle amplitude stronger than the observed one. The INV results show a closer 396	
  

agreement to the observations in the statistical analysis shown in Fig. 5 and 6.	
  397	
  

3.3 Global and regional carbon fluxes 398	
  

We next analyzed the spatiotemporal changes of the simulated land surface gross and 399	
  

net carbon fluxes in the posterior experiments relative to the PRIOR compared to 400	
  

independent data. At large-scale, the variation of the NBE (net biome exchange of 401	
  

CO2 with the atmosphere, referred to as the Net Ecosystem Exchange, NEE plus the 402	
  

land use change related flux) from all of the simulations through the time series is 403	
  

similar to that from the Global Carbon Project 2017 (GCP17; Le Quéré et al., 2018) 404	
  

and INV, with the major anomalies collocated in time (Fig. 7a). A comparison of the 405	
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fluxes from the ocean and fossil fuels from this data set to the corresponding fluxes 406	
  

that are prescribed in CCDAS is shown in Fig. 8. The total annual NBE from the three 407	
  

posterior experiments falls within the spread (shadow green area in Fig. 8d calculated 408	
  

as ±1 standard deviation) of the NBE mean of the terrestrial ecosystem models in the 409	
  

GCP17, contrary to the PRIOR simulation. However, the 1982-2010 mean net biome 410	
  

exchange in all of the assimilation experiments through the time series is on average 411	
  

1.6 PgC yr−1 lower than the flux in the PRIOR simulation (−2.07 PgC yr−1) and 0.6 412	
  

PgC yr−1 lower than the GCP17 value (−1.23±0.98 PgC yr−1) (Table 3, Fig. 8d and 413	
  

Fig. S4 for summary of C balance). 414	
  

In all MPI-CCDAS simulations, the net land-atmosphere C exchange is reduced 415	
  

relative to the PRIOR result in most of the Southern Hemisphere, while NEE 416	
  

increased in the Northern Hemisphere (Fig. S5c, e and g). The analysis per regions 417	
  

illustrates that the extra-tropical northern areas contribute the most to the global net 418	
  

CO2 flux. The increase in respiration (more CO2 emissions to the atmosphere) in the 419	
  

tropics is clearly depicted in the latitudinal gradient of NBE shown in Fig. 7c and in 420	
  

the spatial distribution of the NEE difference between the PRIOR and the posterior 421	
  

experiments (Fig. S5c, e and g). As in the tropics, the NEE in the southern subtropical 422	
  

regions was consistently reduced after the assimilation experiments, also switching 423	
  

the NEE of the STSE region from a C sink of −0.18 PgC yr−1 in the PRIOR to a mean 424	
  

C source to the atmosphere of 0.016 PgC yr−1 in the DEC2 posterior experiment. 425	
  

In the boreal east and west regions (BE and BW), the net land C emissions increased 426	
  

in all of the posterior experiments relative to the PRIOR (Fig. S5c, e and g) with the 427	
  

largest increase in BE for DEC2 (−0.29 PgC yr−1) relative to the corresponding value 428	
  

in the PRIOR (−0.09 PgC yr−1). 429	
  

The simulated latitudinal GPP values agree well with the data-driven Model Tree 430	
  

Ensemble (MTE) estimate from Jung et al. (2011) for the period 1982 to 2010 north 431	
  

of 30 °N. However, the assimilation results are low biased in the tropics, which 432	
  

propagated into low estimates of global GPP in all the posterior results (Fig. 7d and 433	
  

Table 3). After the assimilation, the global GPP and NPP are reduced in the three 434	
  

posterior experiments compared to the PRIOR (118.5 PgC yr−1 and 54.5 PgC yr−1, 435	
  

respectively). In contrast to the posterior global mean of GPP, the value in the PRIOR 436	
  

simulation compares favorably well to the global mean from the MTE product (118.9 437	
  

PgC yr−1) for the same period of analysis. The global mean GPP is reduced by up to 438	
  

26 PgC yr−1 on average in the three posterior experiments compared to the PRIOR 439	
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experiment, but simulation DEC1 experienced the largest reduction in the global 440	
  

photosynthetic C uptake (mean global GPP of 82.9 PgC yr−1) relative to the PRIOR 441	
  

value (Table 3 and spatial distribution in Fig. S5d, f, and h).  442	
  

Although the magnitude of the global NBE and GPP is smaller in the posterior 443	
  

experiments than in the prior, the similar slope detected between the prior and 444	
  

posterior experiments in the anomaly of these fluxes (calculated relative to the 445	
  

temporal mean of each time series) (Fig. 7a and b), suggests that the response to the 446	
  

environmental conditions remains the same through the simulation period even after 447	
  

the assimilation. This robust response shows e.g. in GPP a similar and gradual 448	
  

increasing C uptake (positive trend) during the period of analysis, only with a slightly 449	
  

reduced slope in the PRIOR experiment (Fig. 7b). These trends of the GPP anomaly 450	
  

differ from the one in the MTE GPP, which is only driven by trends in the remote 451	
  

sensing FAPAR and climate parameters and it does not consider increases in 452	
  

photosynthetic light-use efficiency due to CO2 fertilisation.   453	
  

3.4 Interannual variability and long-term phenology trend 454	
  

We analyzed the long-term trend in the FAPAR signal at regional scale with the 455	
  

purpose of evaluating if the model is capable of reproducing the observed long-term 456	
  

greening or browning (i.e. trend to increase or decrease of FAPAR throughout time, 457	
  

respectively) over large regions (Fig. 1). Compared to the FAPARobs, the IAV of 458	
  

FAPAR (obtained from the monthly signal for each experiment) is improved only in 459	
  

the Boreal regions after the assimilation, whereas in the tropical and subtropical 460	
  

regions, the assimilation does not improve the variability  (Fig. 4). This is also 461	
  

identified in the monthly growth rate of FAPAR, which is a representation of the 462	
  

long-term trend for each region after the simulation experiments (Fig. 9). A positive 463	
  

monthly growth rate indicates a trend for the vegetation to greening, and this is 464	
  

occurring in all of the regions according to the FAPAR satellite observations, except 465	
  

in STSW where the long-term trend indicates a decrease of FAPAR (i.e. browning). 466	
  

In this region, the assimilation improved the long-term trend from a positive to a 467	
  

negative growth rate in the three posterior experiments (Fig. 9). Despite in most of the 468	
  

regions the assimilation results agree on a positive long-term trend as in the 469	
  

observations, the magnitude of this trend is in large disagreement to the observations. 470	
  

Particularly in the Boreal East region, the PRIOR experiment overestimates the 471	
  

FAPAR trend by almost double when compared to the observations, and after the 472	
  

assimilation the trend is reduced leading instead to a slight underestimation of the 473	
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growth rate in all of the experiments. The largest disagreement between FAPARobs 474	
  

and FAPARmod after the assimilation is in the TW region, where the observations 475	
  

show a larger and positive trend in FAPAR during the period of analysis, whereas this 476	
  

trend is not captured in the PRIOR and in all the posterior experiments (Fig. 9). 477	
  

Despite the lack of correction of variability and long-term trend in most of the 478	
  

regions, the RMSE between the observations and the regional model results (for 479	
  

1982-2006) is reduced in all of the areas after the assimilation (Fig. A3). The error 480	
  

reduction is evident in experiments DEC1 and DEC2 (the average error reduction 481	
  

after assimilation, in comparison to the error in the PRIOR, for Boreal regions is 19 482	
  

%, and for subtropical northern and southern regions is about 16 %), except for the 483	
  

tropical regions TE and TW where the largest error reduction took place after the 484	
  

ALL experiment (21 % on average) in comparison to the PRIOR experiment.	
  485	
  

3.5 Interannual variability and long-term trends in atmospheric CO2 486	
  

During the nearly thirty years of atmospheric CO2 data available, the time series of 487	
  

the CO2 mole fractions for the PRIOR model underestimate the long-term trend, and 488	
  

start to deviate in the first five years of the time series; whereas for all the assimilation 489	
  

experiments, the trend is in closer agreement to the long-term trend of the 490	
  

measurements during the entire period of the assimilation (leftmost panels of Fig. 5). 491	
  

This correction to the long-term trend is depicted also in the rest of the stations, 492	
  

expressed as the linear monthly trend in simulated or observed CO2 concentrations 493	
  

(rightmost panels of Fig. 5 for ALT, MLO and SPO, and Fig. 6c for summary of all 494	
  

28 stations). The mean of the growth rate calculated from the results of the ALL 495	
  

experiment matches very well with the result of the same calculation in the 496	
  

observations (0.15 ppm month−1 in both cases) compared to the PRIOR model (0.087 497	
  

ppm month−1). The results of the experiments using only 10 years of CO2 data show 498	
  

marked improvements compared to the PRIOR, but tend to underestimate the 499	
  

atmospheric CO2 trend (thus overestimate the terrestrial land uptake) with DEC1 500	
  

(0.14 ppm month−1) and DEC2 (0.145 ppm month−1). Despite moderate improvement, 501	
  

the MPI-CCDAS is incapable of improving the IAV of the atmospheric CO2 502	
  

concentration substantially; remaining unchanged the most notable deviations from 503	
  

the observed signals after the assimilation procedure (Fig. 5). 504	
  

3.6 Prognostic capability of MPI-CCDAS 505	
  

Finally, we analyze the prognostic capability of CCDAS by comparing the model-506	
  

data fit of the decadal assimilation runs to that of the assimilation runs using all data 507	
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as a reference case for “best possible” model-data match given the structural 508	
  

limitations of the MPI-CCDAS to match the observations. To achieve this, we 509	
  

calculated four-year mean differences between the atmospheric CO2 mole fraction 510	
  

measurements and the CO2 model results for all of the stations (for the period 1982-511	
  

2010) (Fig. 10), and also between the FAPAR satellite data and the monthly FAPAR 512	
  

model results (for the period 1982-2006) (Fig. 11). We also calculated the RMSE 513	
  

between the CO2 measurements and model results for each station for four different 514	
  

periods: 1982-1990, 1990-2000, 2000-2010 and 1982-2010 (Fig. A4). The choice of a 515	
  

four-year window was made because with Fig. 5 it was established that the capacity 516	
  

of the MPI-CCDAS to improve the representation of observed interannual variability 517	
  

was very moderate. 518	
  

In the ALL assimilation experiment, the atmospheric CO2 concentration is 519	
  

consistently matched across the entire assimilation period with a −0.03±1 ppm 520	
  

average bias to the observations (Fig. 10). This is in striking contrast to the PRIOR 521	
  

experiment, which fails in all of the stations to reproduce the long-term trend (as 522	
  

discussed earlier). The four-year mean CO2 mole fraction at the end of this simulation 523	
  

is 18.8 ppm lower than in the observations. This is also recognized in the RMSE 524	
  

results where the PRIOR results have the largest error in all of the stations and periods 525	
  

(between 2.8 and 18.7 ppm) (Fig. A4).  526	
  

As for the posterior experiments, the performance of the assimilation of CO2 mole 527	
  

fraction improves, and mostly during the period of the window of assimilation. 528	
  

During those periods, the difference to the measurements and RMSE is reduced, 529	
  

whereas the error increases during the periods of time outside of the window of 530	
  

assimilation. For the DEC1 experiment, the four-year mean difference among the 531	
  

measurements and the model results is between −0.3 and 0.3 ppm in the 80’s, a level 532	
  

at which it remains for the 1990s, where the experiment did not see any observations, 533	
  

but the fit increasingly degrades after year 2000, with an underestimate of the CO2 534	
  

mole fraction by 1.6 ppm on a four-year average (still a 90 % reduction in misfit), and 535	
  

the RMSE is also higher than in DEC2 and ALL for the period 2000-2010 (Fig. A4c). 536	
  

The model results show that when only the first decade of data is assimilated  (i.e. in 537	
  

DEC1), a larger deviation to the long-term trend of atmospheric CO2 is identified 538	
  

after 2000. This is also identified in the results from DEC2 where the lowest four-year 539	
  

mean difference between the observations and the assimilation results takes place in 540	
  

the period of the window of assimilation for this experiment (1990-2000) (Fig. 10 and 541	
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Fig. A4b for RMSE). During this period, the model overestimates the CO2 542	
  

atmospheric concentration only by 0.15 ppm on average whereas for the periods of 543	
  

time outside the window of assimilation, the CO2 concentration is underestimated by 544	
  

0.64 ppm (in the period 1982-1990) and by 1.04 ppm (in the period 2000-2010). 545	
  

Thus, also in experiment DEC2 the prognostic skill of CCDAS is reduced outside the 546	
  

window of assimilation, and the long-term trend is less well reproduced than in the 547	
  

ALL experiment.  548	
  

In the ALL assimilation experiment, the atmospheric CO2 concentration is 0±1 ppm 549	
  

lower than the average value in the observations for the entire simulation period (that 550	
  

corresponds also to the window of assimilation). This suggests that a longer record of 551	
  

atmospheric CO2 measurements favorably contributes to a better representation of the 552	
  

long-term values after the assimilation, but the average deviation to the observations 553	
  

by using shorter assimilation periods do not deviate far from the upper limit of the 554	
  

uncertainty when using the longest record. 555	
  

We also calculated the four-year mean differences between the satellite FAPAR and 556	
  

the results of the PRIOR and assimilation experiments at regional scale (Fig. 11). In 557	
  

this case, the prognostic skill of CCDAS for the periods outside the windows of 558	
  

assimilation is less evident, with a consistent four-year mean difference within the 559	
  

time series and between experiments. 560	
  

4 Discussion 561	
  

The simultaneous assimilation of long-term space borne FAPAR and atmospheric 562	
  

CO2 measurements in the MPI-CCDAS leads to an overall improvement in the 563	
  

modeled global carbon fluxes (as summarized in Fig. A3 and A4). The MPI-CCDAS 564	
  

is capable of extracting information about the seasonal cycle and the long-term trend 565	
  

from the FAPAR observations. However, the imprint of the interannual variability 566	
  

(IAV) on the cost function of the MPI-CCDAS is comparatively low. Therefore, the 567	
  

IAV remains largely unchanged in the posterior. With the exception of the tropical 568	
  

latitudes, the mismatch between observations and model output is small, and thus of 569	
  

little concern. The lacking ability of the MPI-CCDAS to reproduce the higher IAV in 570	
  

the tropical bands, may be indicative of a too weak drought response in the maximum 571	
  

leaf area index of the model. However, the modeled signal remains within 0.05 572	
  

FAPAR (dimensionless) of the observations, and the importance of this mismatch 573	
  

should thus not be too interpreted too strongly.  574	
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The use of decade-long FAPAR data (DEC1 and DEC2) already leads to notable 575	
  

improvement of the simulated seasonal phenology of the land surface. This 576	
  

improvement is predominantly the result of adjustments in the Northern Hemisphere 577	
  

dominated by phenotypes controlled by parameters for temperature and day-length 578	
  

thresholds such as deciduous and evergreen needle leaf and extra-tropical deciduous 579	
  

trees. Thus the optimization of parameters that regulate the onset and end of the 580	
  

growing season improved the timing of the Northern Hemisphere FAPAR during 581	
  

spring and autumn. This finding is generally consistent with the previous application 582	
  

of the MPI-CCDAS for only 5 years (Schürmann et al., 2016).  583	
  

A long-term greening trend in vegetation, especially in boreal regions has been 584	
  

previously observed in analysis of space borne data (Forkel et al., 2016; Lucht et al., 585	
  

2002). While this enhanced vegetation greening was captured in the model already 586	
  

before the assimilation, it was mostly overestimated in northern regions and 587	
  

underestimated in the Southern Hemisphere. At regional scale, the assimilation in all 588	
  

of the posterior experiments improved the growth rate of FAPAR, reflecting a 589	
  

greening trend, and is in closer agreement to the satellite FAPAR data. This was 590	
  

mostly achieved in boreal regions. However, the moderate improvements in the 591	
  

simulated trend in temperate regions of the western hemisphere are associated with a 592	
  

decreased performance in the eastern hemisphere, indicating that the model structure 593	
  

of MPI-CCDAS is incapable of reconciling regional differences. It is unclear whether 594	
  

this is an indication of the need to parameterize these hemispheres differently in terms 595	
  

of their phenological response to the underlying driving factors (such as temperature, 596	
  

moisture availability and day-length), or whether land-use or vegetation dynamics 597	
  

processes not considered by MPI-CCDAS are the reason for this mismatch. Despite 598	
  

these broad-scale improvements, at pixel level the MPI-CCDAS does not necessarily 599	
  

reproduce the magnitude of the greening trend and its interannual variability in all the 600	
  

posterior experiments, which results from the structural dependence of the MPI-601	
  

CCDAS on few, globally applicable PFT-level parameters, and challenges in using 602	
  

the spatial mixed signal at the model resolution to infer PFT-specific parameters. A 603	
  

likely better strategy for constraining these PFT-specific parameters would be to 604	
  

resample the highly resolved satellite product to PFT-specific FAPAR maps prior to 605	
  

aggregation, and provide PFT-specific FAPAR maps to the CCDAS. 606	
  

Our results also demonstrate that the long-term trend of atmospheric CO2 and of its 607	
  

seasonal amplitude in the Northern Hemisphere and at station level is considerably 608	
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improved. This is independent of the different periods of data used for the 609	
  

assimilation. However, the MPI-CCDAS consistently fails to resolve some of the 610	
  

features of the year-to-year variability of the measured atmospheric CO2 stations, 611	
  

which translates into an acceptable, but far from perfect fit to the inferred annual 612	
  

carbon budget of the global carbon project (Le Quéré et al., 2018). We compared the 613	
  

performance at this time-scale to the results from an atmospheric CO2 inversion (INV) 614	
  

with the same input fields and atmospheric transport model than MPI-CCDAS, to 615	
  

illustrate that these deviations do not reflect uncertainties in the representation of the 616	
  

atmospheric transport. It needs to be borne in mind that both the choice of the 617	
  

atmospheric transport model (and associated imperfections at resolving the vertical 618	
  

and lateral atmospheric transport of CO2) and the method to aggregate atmospheric 619	
  

observations to obtain an estimate of the annual growth rate in the global carbon 620	
  

budget introduce some error in any estimate of the interannual variability. As a 621	
  

consequence, only the occurrence of larger model-data mismatches is of concern and 622	
  

a can be interpreted as a genuine result of the MPI-CCDAS’ inability to correctly 623	
  

resolve the carbon flux variation.  624	
  

Particularly, the model is not able to capture large-scale relevant climatic disturbances 625	
  

that influence the interannual variability of the carbon cycle like fires, or the decrease 626	
  

in atmospheric CO2 growth after explosive volcanic eruptions such as for Mt. 627	
  

Pinatubo in 1991, or increase in atmospheric CO2 concentration due to fire occurrence 628	
  

associated with El Niño events (Frölicher et al., 2011; Frölicher et al., 2013). MPI-629	
  

CCDAS lacks a representation of the effect of diffusive radiation on photosynthesis 630	
  

that likely contributed to the post-Pinatubo increase in terrestrial carbon uptake 631	
  

(Mercado et al., 2009). Other important limitations in the current MPI-CCDAS 632	
  

structure that influence the results are: the possibility of only prescribe annual non-633	
  

dynamic LUCC fields, limiting the performance of the model for long-term dynamic 634	
  

changes in vegetation (Reick et al., 2013) and the possibility to dynamically account 635	
  

for fire disturbance (Lasslop et al., 2014) and peatland fires. 636	
  

Independently of the amount of data used in the assimilation window, our results 637	
  

show that the GPP and NEE were consistently reduced globally compared to the prior 638	
  

run, i.e. less carbon uptake by plants leading to the model results to be in closer 639	
  

agreement to other independent estimates such as the GCP17. The MPI-CCDAS 640	
  

suggests a somewhat lower average annual atmospheric CO2 growth rate (calculated 641	
  

by the sum of the net C fluxes from the ocean, land and fossil fuel emissions) than the 642	
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one estimated in the GCP17 (Le Quéré et al., 2018), even if the MPI-CCDAS estimate 643	
  

falls within the uncertainty of the GCP17 (Fig. 8 and S4). Most of the difference 644	
  

stems from small differences in the assumed fossil and ocean carbon fluxes. In case of 645	
  

the carbon fluxes from fossil fuels, the data prescribed in MPI-CCDAS does not 646	
  

contain fluxes due to e.g. cement and flaring, thus the magnitude of the annual carbon 647	
  

sources through the time series is consistently somewhat lower but still within the ±5 648	
  

% uncertainty of the GCP17 data (Le Quéré et al., 2018). As for the ocean carbon 649	
  

sink, the annual mean values prescribed in MPI-CCDAS are also of lower magnitude 650	
  

than the mean value in the GCP17 but falling in the lower limit of the uncertainty 651	
  

value (Fig. 8c and S4). The flux due to LULCC prescribed in MPI-CCDAS is also of 652	
  

lower magnitude than that one from the GCP17 because the simulation made by 653	
  

JSBACH 3.0 does not consider disturbances like fires and gross transitions, which 654	
  

might have also contributed to the lower land C sink obtained in the assimilation 655	
  

experiments compared to the total land C sink in GCP17.  656	
  

Compared to independent estimates of GPP (Jung et al., 2007), the MPI-CCDAS GPP 657	
  

matches well in regions with a distinct, light and temperature driven seasonal cycle 658	
  

(i.e. north of approx. 30 °N), translating to a reduction in modeled GPP by 0.7 PgC 659	
  

yr−1 in boreal regions. However, as in Schürmann et al. (2016), the tropical 660	
  

productivity is strongly reduced by the assimilation to estimates that are substantially 661	
  

lower than independent estimates (Jung et al., 2007). An important factor influencing 662	
  

the global reduction of GPP and the tropical uptake of C appears to be related to the 663	
  

difference in data availability of CO2 stations between the assimilation windows, 664	
  

specifically the fact that in the data-poor period DEC1, topical GPP is substantially 665	
  

lower than estimated independently and compared to the assimilation runs with more 666	
  

stations in DEC2 and ALL. As a result, the mean tropical land C source to the 667	
  

atmosphere in the prior experiment (mean NBE value of 0.12 PgC yr−1, and minimum 668	
  

value of −0.07 PgC yr−1, reflecting C uptake in the 4 °S latitudinal band) was 669	
  

increased to 0.37±0.17 PgC yr−1 on average for all the posterior results. 670	
  

The total global vegetation C stock in all of the experiments, including the PRIOR, is 671	
  

in closer agreement to the lower end of the estimate by Carvalhais et al., (2014) (296 672	
  

PgC). In the posterior experiments, the vegetation C pool decreased between 14 and 673	
  

20 % of the value in the PRIOR but still remaining within the range of the literature 674	
  

estimate (442±146 PgC). The global soil C stock showed a more drastic change after 675	
  

the assimilation. In all the posterior experiments, the soil C pool decreased by 45, 43 676	
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and 53 % with respect to the value in the PRIOR. Particularly after the assimilation, 677	
  

the total C in the soil (1362 PgC) in the ALL experiment is in closer agreement to the 678	
  

estimate from the Harmonized World Soil Database 679	
  

(http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML; 680	
  

last access January 2015) of 1343 PgC (Table 3). It is important noting that the 681	
  

JSBACH 3.0 version used in this MPI-CCDAS does not include permafrost 682	
  

processes; therefore the global soil C stock might be underestimated. 683	
  

The parameter optimisation resulted in considerable reduction in the cost function and 684	
  

norm of gradient, which can be clearly seen as a reduction in the root mean squared 685	
  

error of the MPI-CCDAS compared to the FAPAR and CO2 observations (Fig. A3 686	
  

and A4). The trajectory of model parameters involved in the optimization differed for 687	
  

each experiment and each phenotype. While some parameters such as the maximum 688	
  

leaf area of grasses and shrubs and the correction parameter for the initial soil pool 689	
  

size were consistently retrieved, some final parameter estimates varied considerably 690	
  

between the three experiments, e.g., the tropical maximum leaf area index and some 691	
  

of the parameters controlling the seasonality of the phenology (Figure A2). The 692	
  

consequence of these variations are regional differences in the simulated compartment 693	
  

fluxes GPP and ecosystem respiration, which apparently are not well constrained 694	
  

from the observations. Interestingly, these differences lead to very similar absolute 695	
  

values in global carbon fluxes and their trends. This clearly demonstrates a certain 696	
  

degree of equifinality in the results, and cautions a too stringent interpretation of the 697	
  

outcome of the MPI-CCDAS in terms of improving understanding about biosphere 698	
  

processes and their long-term trends. 699	
  

Notwithstanding these conceptual issues, the set-up of this study enables to test by 700	
  

how much the quality of the data-model agreement is reduced by exposing the MPI-701	
  

CCDAS to shorter observational time-series. This can be done by comparing the 702	
  

results of the ALL experiment to the years of 1990-2010 for the DEC1 experiment, 703	
  

and for 2000-2010 for the DEC2 experiment. In terms of FAPAR, there is no clear 704	
  

degradation of fit with time even though in general terms the trend in the data are best 705	
  

matched with the ALL experiment. This is foremost a consequence of comparatively 706	
  

small trends in observed FAPAR, implying that extracting mean seasonal patterns and 707	
  

amplitude for a few years is most essential for simulating current and near-term 708	
  

FAPAR. This would suggest that a focus of assimilation on high-quality and highly 709	
  

spatially resolved FAPAR should be a priority over the use of long-term data sets. 710	
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The results are different for the case of projecting atmospheric CO2, where the model-711	
  

data agreement of approximately ±0.5 ppm during the assimilation period starts to 712	
  

deviate for the DEC1 experiment later than 10 years after the end of the assimilation 713	
  

window, whereas in the DEC2 experiment, the degradation of the model-data match 714	
  

already starts after approximately 5 years. Nonetheless, with the caveat that MPI-715	
  

CCDAS does not fully explain the interannual variability of the land net carbon flux, 716	
  

this suggests a reasonable short-term forecasting (for a small number of years) skill of 717	
  

atmospheric CO2. 718	
  

5 Conclusion 719	
  

The MPI-CCDAS is capable of simultaneously integrating two independent 720	
  

observational data sets over three consecutive decades at the global scale to estimate 721	
  

global carbon fluxes. The results demonstrate that assimilating only one decade of 722	
  

observations, for two observational data (FAPAR and atmospheric CO2 723	
  

concentrations), leads to broadly comparable results and trends in the global carbon 724	
  

cycle components than using the full time series of available observations (thirty 725	
  

years). Currently the system is able to confidently predict the carbon fluxes in short 726	
  

time scales (up to 5 years after the end of the window of assimilation) e.g. for 727	
  

atmospheric CO2 concentrations at site level, and the mean prediction remains within 728	
  

the uncertainty of the observations. However, long-term predictions with CCDAS are 729	
  

more uncertain, as the observational record does not fully constrain the long-term land 730	
  

net C uptake in the current phase of rising atmospheric CO2 and gradually changing 731	
  

climate. The MPI-CCDAS is a computational expensive system, and the 732	
  

demonstration that large-scale carbon fluxes can be improved by only using a limited 733	
  

period of observations increases the feasibility of using DA to constrain the land 734	
  

carbon budget in land surface models. However, we also show that there is 735	
  

considerable variations in the estimated parameter space and regional distribution of 736	
  

the land C uptake suggesting that further improvements in the land-surface model, 737	
  

especially in the current structure and design, must be first solved to improve the 738	
  

model and computational efficiencies of the system before an attempt to include 739	
  

another observational stream can be made to potentially improve its prognostic skill. 740	
  

 741	
  

 742	
  

 743	
  

 744	
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6 Code availability 745	
  

The code of the JSBACH model is available upon request to S. Zaehle (szaehle@bgc-746	
  

jena.mpg.de). The TM3 model code is available upon request to C. Rödenbeck 747	
  

(christian.roedenbeck@bgc-jena.mpg.de). The TAF-generated derivative code is not 748	
  

available and it is subject to license restrictions. 749	
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Table 2 – Statistical analysis of FAPAR for 1982 – 2006 in all of the experiments, and 
also for the periods of the window of assimilation only for DEC1 and DEC2. R2 is 
obtained from the linear correlation between FAPARobs and FAPARmod calculated for 
the entire period and by seasons. 
 

 Bias NRMSE R2 
   All 

year 
DJF MAM JJA SON 

PRIOR 0.37 0.95 0.16 0.14 0.31 0.21 0.33 
ALL 0.10 0.76 0.20 0.14 0.34 0.20 0.37 
DEC1 0.08 0.64 0.34 0.15 0.39 0.18 0.41 
DEC2 0.09 0.65 0.34 0.14 0.39 0.18 0.41 

Only for the period of the assimilation window 
DEC1  
(1980-1990) 

0.09 0.66 0.34 0.18 0.42 0.21 0.48 

DEC2  
(1990-2000) 

0.05 0.48 0.34 0.18 0.41 0.21 0.47 

 
 
Table 3 – Global average of the terrestrial carbon cycle components and carbon stocks 
in results from the assimilation experiments and prior (1980-2010), and other 
independent estimates (see table foot for description). 
 

 PRIOR ALL DEC1 DEC2 INV Literature 
GPP (PgC yr−1) 118.5 96.8 82.9 97.0 - 118.9a 
NPP (PgC yr−1) 54.5 34.2 37.2 30.2 - - 
NEE (PgC yr−1) −2.65 −1.14 −1.32 −1.17 −1.17c −2.25±1.17b 
NBE (NEE + LUCC) 
(PgC yr−1) −2.07 −0.56 −0.74 −0.59 - −1.23±0.98b 

ER (PgC yr−1) 115.5 95.0 80.9 95.1 - - 
 Ra (PgC yr−1) 64.1 62.6 45.7 66.8 - - 
 Rh (PgC yr−1) 51.4 32.4 65.2 28.3 - - 
Soil C (PgC) 2480 1362 1422 1165 - 1343d 

Vegetation C (PgC) 392 311 335 312 - 442±146e 

Litter C (PgC) 228 167 171 158 - - 

a Model Tree Ensemble data-driven product; Jung et al., 2011; average for 1982-2010, 
b Global Carbon Project 2017; Le Quéré et al., 2018; average for 1980-2010. The 
NBE values include the LULCC reported for each individual model. 
c Inversion result is the average for 1980-2009 
d http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML 
e Carvalhais et al. (2014). 
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Figures.

 
Figure 1 – Global distribution of the temporal mean (1982-2006) of the merged 
satellite FAPAR product used in the assimilation procedure. It shows also the spatial 
coverage of eight regions globally distributed: Boreal West and East (BW and BE, for 
latitudes north of 60 °N), subtropical Northwest and Northeast (STNW and STNE, 
between latitudes 20 °N and 60 °N); tropical West and East (TW and TE, between 
latitudes 20 °N and 20 °S); subtropical Southwest and Southeast (STSW and STSE, 
for latitudes south of 20 S). Also shown six selected pixels: P1, for the coniferous 
deciduous (CD) phenotype in the East Siberian Taiga; P2, for the C4 pastures and 
grasses (TrH) of central Brazil; P3, for the C3 and C4 crops, pastures and grasses 
(TeCr and TeH) of Northern USA; P4 and P5, for tropical evergreen trees (TrBe) 
situated in Northwestern Brazil and central Africa; and P6, for coniferous evergreen 
(CE) located in Canada; and the location of 28 stations of the CO2 network 
measurements (filled triangles, stations only included in DEC1; empty triangles, 
stations included also in ALL and DEC2) for analysis of the assimilation results. 
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Figure 2 – Experimental set up for posterior experiments ALL, DEC1 and DEC2 that 
use different temporal windows for the assimilation of observations of FAPAR and 
molar fractions of atmospheric CO2. 
 

 
Figure 3 – Spatial difference between the results from the posterior and the PRIOR 
experiments for the total period of the simulation (1980-2010) of the mean Leaf Area  
Index (LAI) (left panels) and the correlation coefficient (R2) of FAPAR between the 
model and the observations (right panels). 

 180oW  120oE   60oE 

ALL - PRIOR

   0o    60oW  120oW  180oW 
  60oS 

  30oS 

   0o  

  30oN 

  60oN 

  90oN 

 180oW  120oE   60oE 

DEC1 - PRIOR

   0o    60oW  120oW  180oW 
  60oS 

  30oS 

   0o  

  30oN 

  60oN 

  90oN 

 180oW  120oE   60oE 

DEC2 - PRIOR

   0o    60oW  120oW  180oW 
  60oS 

  30oS 

   0o  

  30oN 

  60oN 

  90oN 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

 180oW  120oE   60oE 

Diff R2 (ALL-PRIOR)

   0o    60oW  120oW  180oW 
  60oS 

  30oS 

   0o  

  30oN 

  60oN 

  90oN 

 180oW  120oE   60oE 

Diff R2 (DEC1-PRIOR)

   0o    60oW  120oW  180oW 
  60oS 

  30oS 

   0o  

  30oN 

  60oN 

  90oN 

 180oW  120oE   60oE 

Diff R2 (DEC2-PRIOR)

   0o    60oW  120oW  180oW 
  60oS 

  30oS 

   0o  

  30oN 

  60oN 

  90oN 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Mean LAI (m2/m2) [1980-2010] R2 difference [1980-2010] 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-517
Manuscript under review for journal Biogeosciences
Discussion started: 2 January 2019
c© Author(s) 2019. CC BY 4.0 License.



 
	
  

34	
  

 
Figure 4 – Interannual variability of FAPAR in the satellite observations and model 
experiments for the six selected regions. 
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Figure 5 – Statistical analysis of atmospheric CO2 in three flask measurement sites: 
Alert (ALT; top panels), Mauna Loa (MLO, center panels) and South Pole (SPO, 
bottom panels), from the measurements, PRIOR, posterior experiments (ALL, DEC1 
and DEC2) and inversion (INV1). For each station the panels show the time series of 
the mean monthly values, the mean seasonal cycle, the interannual variability and the 
monthly growth rate for the entire period of the simulation (1980-2010). 
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Figure 6 – a) Latitudinal distribution of the mean CO2 seasonal amplitude for the 28 
flask-measurement stations from the observations, PRIOR and posterior experiments; 
b) Latitudinal distribution of R2 obtained from the correlation between the 
observations and each simulation results of the mean atm. CO2 seasonal cycle and c) 
average atmospheric CO2 monthly growth rate across stations for the observations and 
model results. The star on each bar is the mean of the atm. CO2 monthly growth rate, 
the horizontal middle black line on each box is the median, the red whiskers depict 
the error as +/− 1σ, and the grey dots on each box are the actual monthly growth rate 
values for all the stations in each data set.  
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Figure 7 – Time series of the anomaly to the temporal mean of the time series (a and 
b), and latitudinal gradient (c and d) of the total Net Ecosystem Exchange (NEE 
including the influence of LULCC) (left) and Gross Primary Production (right) for the 
results of each model simulation. NEE from the model is compared to the GCP 2017 
and INV data set (a and c). GPP is compared to the MTE data-data driven estimate of 
Jung et al., (2011) (b and d). 
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Figure 8 – Time series of the annual mean of the major components of the C cycle 
used as background fluxes in CCDAS compared to those from the GCP 2017. The 
atm. CO2 growth from the model output is the result of the sum of fossil fuel, ocean, 
and land C fluxes. The blue shadow in the ocean C sink of the GCP 2017 data is the 
standard deviation of the mean sink from the models that contributed to the GCP. The 
land C flux is the total NEE with contribution of the flux due to LULCC. The green 
shadow area is the standard deviation of the mean land C flux from the terrestrial 
models that contributed to the GCP. 
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Figure 9 – Mean monthly growth rate of FAPAR for 1982-2006 on each analyzed 
geographical region for the satellite observations and results of PRIOR and the 
posterior experiments. 

 
Figure 10 – Time series of the four-year mean of the atm. CO2 anomaly to the 
observations for each model experiment and for all the stations. The y-axis is limited 
to the results in the posterior experiments. The error bar indicates +/− 1 standard 
deviation of the four-year mean of the differences to the observations. The first 
marker  in the time series (in asteric) is the single value for 1982. 
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Figure 11 – Time series of the four-year mean of the FAPAR anomaly to the satellite 
data for each model experiment in six selected model pixels. The error bar indicates 
the +/− 1 standard deviation of the four-year differences. The first marker (in asteric) 
in the time series is the single value for 1982.  
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Appendix 
 
 
 

 
 
Figure A1 – Data availability and latitudinal location of the 28 stations where the 
long-term flask measurements of atmospheric CO2 mole fractions were taken for 
assimilation in CCDAS. ALL experiment used all the stations of the time series (blue 
and red bars) (1980-2010); DEC1 used data only from stations with blue bars (1980-
1990), and DEC2 used also the data in the stations with red bars (1990-2000) (except 
stations SBL and CRZ marked with patterned bar). 
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Figure A2 – Final value for each parameter p at the end of the assimilation 
experiments, normalized to the prior value (ppr), i.e. (p/ppr)-1. This is shown for each 
model plant functional type and globally for the land C turnover parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A3 – RMSE for FAPAR from the model results and observations for the 
period 1982-2006 and for different regions. 
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Figure A4 – RMSE for different periods between CO2 atm. concentrations from 
measurements and model results for the different assimilation experiments for each of 
the station. 
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